Link Search Menu Expand Document

Odin

Odin is an open source diagnosis framework for generic machine learning classification tasks and for computer vision object detection and instance segmentation tasks that lets developers add meta-annotations to their data sets, compute performance metrics split by meta-annotation values, and visualize diagnosis reports.
Odin is agnostic to the training platform and input formats and can be extended with application- and domain-specific meta-annotations and metrics with almost no coding.

Odin on GitHub


architecture


Supported Tasks

Odin provides different diagnosis methods for machine learning models which address one of the following tasks:

Classification
requires an algorithm to categorize the input data into categories
Object Detection
requires an algorithm to determine which objects are present in an image and to localize their position using bounding boxes
Instance Segmentation
requires an algorithm to determine which objects are present in an image and to localize their position using a pixel-level segmentation mask

Supported Diagnosis Methods

The following tables summarize the evaluation metrics and diagnosis methods supported in Odin.

Evaluation Metrics

Metrics Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
Base Metrics Accuracy yes yes yes n/a n/a
Error Rate yes yes yes n/a n/a
Precision yes yes yes yes yes
Recall yes yes yes yes yes
F1 Score yes yes yes yes yes
Average Precision yes yes yes yes yes
Precision-Recall AUC yes yes yes yes yes
ROC AUC yes yes yes n/a n/a
F1 AUC yes yes yes yes yes
Custom Metric yes yes yes yes yes
Curves Precision-Recall yes yes yes yes yes
F1 yes yes yes yes yes
ROC yes yes yes n/a n/a

Dataset Exploration

Analysis Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
Distribution of Classes Total yes yes yes yes yes
Per-property yes yes yes yes yes
Distribution of Properties Total yes yes yes yes yes
Per-category yes yes yes yes yes
Co-occurrence Matrix Total n/a n/a yes yes yes

Model Analyses

Analysis Models Comparison Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
Performance Analysis Per-property yes yes yes yes yes yes
Sensitivity and Impact Analysis Per-property yes yes yes yes yes yes
Distribution of TP Total yes no yes yes yes yes
Per-category yes yes yes yes yes yes
Distribution of FP Total yes no yes yes yes yes
Per-category yes yes yes yes n/a n/a
Distribution of FN Total yes no yes yes yes yes
Per-category yes yes yes yes yes yes
Distribution of TN Total yes no yes yes n/a n/a
Per-category yes yes yes yes n/a n/a
Confusion Matrix Total n/a yes yes n/a n/a n/a
Per-category n/a no yes yes n/a n/a
Per-property n/a yes yes yes n/a n/a
FP Categorization and Impact* Per-category yes no yes yes yes yes
FP Trend Per-category no no yes yes yes yes
FN Categorization Per-category yes no yes yes yes yes
Curve Analysis Total yes yes yes yes yes yes
Per-category yes no yes yes yes yes
Reliability Analysis Total n/a yes yes yes yes yes
Per-category n/a no yes yes yes yes
Top-1 Top-5 Analysis Total no n/a yes n/a n/a n/a
Per-property no n/a yes n/a n/a n/a
IoU Analysis Per-category no n/a n/a n/a yes yes
Performance Summary Total yes yes yes yes yes yes
Per-category yes no yes yes yes yes
Per-property yes yes yes yes yes yes

*From the previous version, we have modified the counting of the background errors ​for localization problems. For more information, click here

Supported CAMs Methods

Evaluation Metrics

Metrics Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
CAMs Metrics Global IoU yes yes yes n/a n/a
Component IoU yes yes yes n/a n/a
Irrelevant Attention yes yes yes n/a n/a
Bbox Coverage yes yes yes n/a n/a

CAMs Analyses

Analysis Models Comparison Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
CAMs Analysis Total yes yes yes yes n/a n/a
Per-category no yes yes yes n/a n/a

Contributors

Piero Fraternali - piero.fraternali@polimi.it

Rocio Nahime Torres - rocionahime.torres@polimi.it

Federico Milani - federico.milani@polimi.it

Niccolò Zangrando - niccolo.zangrando@polimi.it