Link Search Menu Expand Document

Analyses Visualization

Table of contents

Classification Example Example CL gif
Localization Example Example LOC gif

visualize_annotations_for_true_positive()

It shows the ground truth and the predictions based on the true positive analysis.

Parameters

categories

list, optional
List of categories to be included in the visualization. If not specified, all the categories are included.
(default is None)
model

str, optional
Name of the model used for the analysis. If not specified, it is considered the first provided.
(default is None)

Example

Classification

from odin.classes import VisualizerClassification

my_visualizer = VisualizerClassification(models)
my_visualizer.visualize_annotations_for_true_positive()

Localization

from odin.classes import VisualizerLocalization

my_visualizer = VisualizerLocalization(models)
my_visualizer.visualize_annotations_for_true_positive()

Tasks supported

Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
yes yes yes yes yes

visualize_annotations_for_false_positive()

It shows the ground truth and the predictions based on the false positive analysis.

Parameters

categories

list, optional
List of categories to be included in the visualization. If not specified, all the categories are included.
(default is None)
model

str, optional
Name of the model used for the analysis. If not specified, it is considered the first provided.
(default is None)

Example

Classification

from odin.classes import VisualizerClassification

my_visualizer = VisualizerClassification(models)
my_visualizer.visualize_annotations_for_false_positive()

Localization

from odin.classes import VisualizerLocalization

my_visualizer = VisualizerLocalization(models)
my_visualizer.visualize_annotations_for_false_positive()

Tasks supported

Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
yes yes yes yes yes

visualize_annotations_for_false_negative()

It shows the ground truth and the predictions based on the false negative analysis.

Parameters

categories

list, optional
List of categories to be included in the visualization. If not specified, all the categories are included.
(default is None)
model

str, optional
Name of the model used for the analysis. If not specified, it is considered the first provided.
(default is None)

Example

Classification

from odin.classes import VisualizerClassification

my_visualizer = VisualizerClassification(models)
my_visualizer.visualize_annotations_for_false_negative()

Localization

from odin.classes import VisualizerLocalization

my_visualizer = VisualizerLocalization(models)
my_visualizer.visualize_annotations_for_false_negative()

Tasks supported

Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
yes yes yes yes yes

visualize_annotations_for_true_negative()

It shows the ground truth and the predictions based on the true negative analysis.

Parameters

model

str, optional
Name of the model used for the analysis. If not specified, it is considered the first provided.
(default is None)

Example

Classification

from odin.classes import VisualizerClassification

my_visualizer = VisualizerClassification(models)
my_visualizer.visualize_annotations_for_true_negative()

Tasks supported

Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
yes no no no no

visualize_annotations_for_error_type()

It shows the ground truth and the predictions based on the false positive error type analysis.

Parameters

error_type

ErrorType
Error type to be included in the analysis. The types of error supported are: ErrorType.BACKGROUND, ErrorType.LOCALIZATION (only for localization tasks), ErrorType.SIMILAR_CLASSES, ErrorType.OTHER.
categories

list, optional
List of categories to be included in the visualization. If not specified, all the categories are included.
(default is None)
model

str, optional
Name of the model used for the analysis. If not specified, it is considered the first provided.
(default is None)

Example

Classification

from odin.classes import VisualizerClassification

my_visualizer = VisualizerClassification(models)
my_visualizer.visualize_annotations_for_error_type(ErrorType.SIMILAR_CLASSES)

Localization

from odin.classes import VisualizerLocalization

my_visualizer = VisualizerLocalization(models)
my_visualizer.visualize_annotations_for_error_type(ErrorType.LOCALIZATION)

Tasks supported

Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
no yes yes yes yes