Link Search Menu Expand Document

CAMs

Table of contents

analyze_cams()

It provides the analysis of the model CAMs at different thresholds for the entire data set.

Parameters

metric

Metrics, optional
Evaluation metric used for the analysis. If not specified, the default one is used.
(default is None)
show

bool, optional
Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)

Example

Classification

from odin.classes import AnalyzerCAMs

my_analyzer = AnalyzerCAMs("my_classifier_name", my_CAMs_dataset)
my_analyzer.analyze_cams()

analyze_cams_output


Models comparison

Example

Classification

from odin.classes import ComparatorCAMs

my_comparator = ComparatorCAMs(dataset_gt_param, classification_type, models_proposals)
my_comparator.analyze_cams()

compare_models_on_cams_threshold_output


Tasks supported

Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
yes yes yes no no

analyze_cams_for_categories()

It provides a per-category analysis of the model CAMs at different thresholds.

Parameters

categories

list, optional
List of categories to be included in the analysis. If not specified, all the categories are included.
(default is None)
metric

Metrics, optional
Evaluation metric used for the analysis. If not specified, the default one is used.
(default is None)
show

bool, optional
Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)

Example

Classification

from odin.classes import AnalyzerCAMs

my_analyzer = AnalyzerCAMs("my_classifier_name", my_CAMs_dataset)
my_analyzer.analyze_cams_for_categories()

analyze_cams_output


Tasks supported

Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
no yes yes no no