Distributions
Table of contents
- show_confusion_matrix()
- show_true_positive_distribution()
- show_false_positive_distribution()
- show_false_negative_distribution()
- show_true_negative_distribution()
- show_true_positive_distribution_for_categories_for_property()
- show_false_positive_distribution_for_categories_for_property()
- show_false_negative_distribution_for_categories_for_property()
- show_true_negative_distribution_for_categories_for_property()
show_confusion_matrix()
It shows the confusion matrix of the model. The confusion matrix can be performed for the entire data set or for a subset with a specific property value.
Parameters
- categories
list, optional- List of categories to be included in the analysis. If not specified, all the categories are included.
(default is None) - properties_names
list, optional- List of properties to be included in the analysis. If not specified, all the properties are included.
(default is None) - properties_values
list of list, optional- Properties values to be considered in te analysis. If not specified, all the values are considered.
(default is None)
The index of the properties values must be the same of the properties names. Example:
properties_names=['name1', 'name2']
properties_values=[['value1_of_name1', 'value2_of_name1'], ['value1_of_name2']] - show
bool, optional- Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)
Example
Classification
from odin.classes import AnalyzerClassification
my_analyzer = AnalyzerClassification("my_classifier_name", my_classification_dataset)
my_analyzer.show_confusion_matrix()
N.B. As example, it is shown only the output of a single category, but the analysis is performed for all the categories selected. The confusion matrix among the categories is supported only for single-label classification task.
Tasks supported
Binary Classification | Single-label Classification | Multi-label Classification | Object Detection | Instance Segmentation |
---|---|---|---|---|
yes | yes | yes | no | no |
show_true_positive_distribution()
It provides the true positive distribution among the categories.
Parameters
- categories
list, optional- List of categories to be included in the analysis. If not specified, all the categories are included.
(default is None) - show
bool, optional- Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)
Example
Classification
from odin.classes import AnalyzerClassification
my_analyzer = AnalyzerClassification("my_classifier_name", my_classification_dataset)
my_analyzer.show_true_positive_distribution()
Localization
from odin.classes import AnalyzerLocalization
my_analyzer = AnalyzerLocalization("my_detector_name", my_localization_dataset)
my_analyzer.show_true_positive_distribution()
Models comparison
Example
Classification
from odin.classes import ComparatorClassification
my_comparator = ComparatorClassification(dataset_gt_param, classification_type, models_proposals)
my_comparator.show_true_positive_distribution()
Localization
from odin.classes import ComparatorLocalization
my_comparator = ComparatorLocalization(dataset_gt_param, task_type, models_proposals)
my_comparator.show_true_positive_distribution()
Tasks supported
Binary Classification | Single-label Classification | Multi-label Classification | Object Detection | Instance Segmentation |
---|---|---|---|---|
no | yes | yes | yes | yes |
show_false_positive_distribution()
It provides the false positive distribution among the categories.
Parameters
- categories
list, optional- List of categories to be included in the analysis. If not specified, all the categories are included.
(default is None) - show
bool, optional- Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)
Example
Classification
from odin.classes import AnalyzerClassification
my_analyzer = AnalyzerClassification("my_classifier_name", my_classification_dataset)
my_analyzer.show_false_positive_distribution()
Localization
from odin.classes import AnalyzerLocalization
my_analyzer = AnalyzerLocalization("my_detector_name", my_localization_dataset)
my_analyzer.show_false_positive_distribution()
Models comparison
Example
Classification
from odin.classes import ComparatorClassification
my_comparator = ComparatorClassification(dataset_gt_param, classification_type, models_proposals)
my_comparator.show_false_positive_distribution()
Localization
from odin.classes import ComparatorLocalization
my_comparator = ComparatorLocalization(dataset_gt_param, task_type, models_proposals)
my_comparator.show_false_positive_distribution()
Tasks supported
Binary Classification | Single-label Classification | Multi-label Classification | Object Detection | Instance Segmentation |
---|---|---|---|---|
no | yes | yes | yes | yes |
show_false_negative_distribution()
It provides the false negative distribution among the categories.
Parameters
- categories
list, optional- List of categories to be included in the analysis. If not specified, all the categories are included.
(default is None) - show
bool, optional- Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)
Example
Classification
from odin.classes import AnalyzerClassification
my_analyzer = AnalyzerClassification("my_classifier_name", my_classification_dataset)
my_analyzer.show_false_negative_distribution()
Localization
from odin.classes import AnalyzerLocalization
my_analyzer = AnalyzerLocalization("my_detector_name", my_localization_dataset)
my_analyzer.show_false_negative_distribution()
Models comparison
Example
Classification
from odin.classes import ComparatorClassification
my_comparator = ComparatorClassification(dataset_gt_param, classification_type, models_proposals)
my_comparator.show_false_negative_distribution()
Localization
from odin.classes import ComparatorLocalization
my_comparator = ComparatorLocalization(dataset_gt_param, task_type, models_proposals)
my_comparator.show_false_negative_distribution()
Tasks supported
Binary Classification | Single-label Classification | Multi-label Classification | Object Detection | Instance Segmentation |
---|---|---|---|---|
no | yes | yes | yes | yes |
show_true_negative_distribution()
It provides the true negative distribution among the categories.
Parameters
- categories
list, optional- List of categories to be included in the analysis. If not specified, all the categories are included.
(default is None) - show
bool, optional- Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)
Example
Classification
from odin.classes import AnalyzerClassification
my_analyzer = AnalyzerClassification("my_classifier_name", my_classification_dataset)
my_analyzer.show_true_negative_distribution()
Models comparison
Example
Classification
from odin.classes import ComparatorClassification
my_comparator = ComparatorClassification(dataset_gt_param, classification_type, models_proposals)
my_comparator.show_true_negative_distribution()
Tasks supported
Binary Classification | Single-label Classification | Multi-label Classification | Object Detection | Instance Segmentation |
---|---|---|---|---|
no | yes | yes | no | no |
show_true_positive_distribution_for_categories_for_property()
It provides the true positive distribution of the property values for each category.
Parameters
- property_name
str- Name of the property to be analyzed.
- property_values
list, optional- List of the property values to be included in the analysis. If not specified, all the values are included.
(default is None) - categories
list, optional- List of categories to be included in the analysis. If not specified, all the categories are included.
(default is None) - show
bool, optional- Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)
Example
Classification
from odin.classes import AnalyzerClassification
my_analyzer = AnalyzerClassification("my_classifier_name", my_classification_dataset)
my_analyzer.show_true_positive_distribution_for_categories_for_property("property_name")
Localization
from odin.classes import AnalyzerLocalization
my_analyzer = AnalyzerLocalization("my_detector_name", my_localization_dataset)
my_analyzer.show_true_positive_distribution_for_categories_for_property("property_name")
Models comparison
Example
Classification
from odin.classes import ComparatorClassification
my_comparator = ComparatorClassification(dataset_gt_param, classification_type, models_proposals)
my_comparator.show_true_positive_distribution_for_categories_for_property("property_name")
Localization
from odin.classes import ComparatorLocalization
my_comparator = ComparatorLocalization(dataset_gt_param, task_type, models_proposals)
my_comparator.show_true_positive_distribution_for_categories_for_property("property_name")
Tasks supported
Binary Classification | Single-label Classification | Multi-label Classification | Object Detection | Instance Segmentation |
---|---|---|---|---|
yes | yes | yes | yes | yes |
show_false_positive_distribution_for_categories_for_property()
It provides the false positive distribution of the property values for each category.
Parameters
- property_name
str- Name of the property to be analyzed.
- property_values
list, optional- List of the property values to be included in the analysis. If not specified, all the values are included.
(default is None) - categories
list, optional- List of categories to be included in the analysis. If not specified, all the categories are included.
(default is None) - show
bool, optional- Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)
Example
Classification
from odin.classes import AnalyzerClassification
my_analyzer = AnalyzerClassification("my_classifier_name", my_classification_dataset)
my_analyzer.show_false_positive_distribution_for_categories_for_property("property_name")
Models comparison
Example
Classification
from odin.classes import ComparatorClassification
my_comparator = ComparatorClassification(dataset_gt_param, classification_type, models_proposals)
my_comparator.show_false_positive_distribution_for_categories_for_property("property_name")
Tasks supported
Binary Classification | Single-label Classification | Multi-label Classification | Object Detection | Instance Segmentation |
---|---|---|---|---|
yes | yes | yes | no | no |
show_false_negative_distribution_for_categories_for_property()
It provides the false negative distribution of the property values for each category.
Parameters
- property_name
str- Name of the property to be analyzed.
- property_values
list, optional- List of the property values to be included in the analysis. If not specified, all the values are included.
(default is None) - categories
list, optional- List of categories to be included in the analysis. If not specified, all the categories are included.
(default is None) - show
bool, optional- Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)
Example
Classification
from odin.classes import AnalyzerClassification
my_analyzer = AnalyzerClassification("my_classifier_name", my_classification_dataset)
my_analyzer.show_false_negative_distribution_for_categories_for_property("property_name")
Localization
from odin.classes import AnalyzerLocalization
my_analyzer = AnalyzerLocalization("my_detector_name", my_localization_dataset)
my_analyzer.show_false_negative_distribution_for_categories_for_property("property_name")
Models comparison
Example
Classification
from odin.classes import ComparatorClassification
my_comparator = ComparatorClassification(dataset_gt_param, classification_type, models_proposals)
my_comparator.show_false_negative_distribution_for_categories_for_property("property_name")
Localization
from odin.classes import ComparatorLocalization
my_comparator = ComparatorLocalization(dataset_gt_param, task_type, models_proposals)
my_comparator.show_false_negative_distribution_for_categories_for_property("property_name")
Tasks supported
Binary Classification | Single-label Classification | Multi-label Classification | Object Detection | Instance Segmentation |
---|---|---|---|---|
yes | yes | yes | yes | yes |
show_true_negative_distribution_for_categories_for_property()
It provides the true negative distribution of the property values for each category.
Parameters
- property_name
str- Name of the property to be analyzed.
- property_values
list, optional- List of the property values to be included in the analysis. If not specified, all the values are included.
(default is None) - categories
list, optional- List of categories to be included in the analysis. If not specified, all the categories are included.
(default is None) - show
bool, optional- Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)
Example
Classification
from odin.classes import AnalyzerClassification
my_analyzer = AnalyzerClassification("my_classifier_name", my_classification_dataset)
my_analyzer.show_true_negative_distribution_for_categories_for_property("property_name")
Localization
from odin.classes import AnalyzerLocalization
my_analyzer = AnalyzerLocalization("my_detector_name", my_localization_dataset)
my_analyzer.show_true_negative_distribution_for_categories_for_property("property_name")
Models comparison
Example
Classification
from odin.classes import ComparatorClassification
my_comparator = ComparatorClassification(dataset_gt_param, classification_type, models_proposals)
my_comparator.show_true_negative_distribution_for_categories_for_property("property_name")
Tasks supported
Binary Classification | Single-label Classification | Multi-label Classification | Object Detection | Instance Segmentation |
---|---|---|---|---|
yes | yes | yes | no | no |