Link Search Menu Expand Document

Distributions

Table of contents

show_confusion_matrix()

It shows the confusion matrix of the model. The confusion matrix can be performed for the entire data set or for a subset with a specific property value.

Parameters

categories

list, optional
List of categories to be included in the analysis. If not specified, all the categories are included.
(default is None)
properties_names

list, optional
List of properties to be included in the analysis. If not specified, all the properties are included.
(default is None)
properties_values

list of list, optional
Properties values to be considered in te analysis. If not specified, all the values are considered.
(default is None)
The index of the properties values must be the same of the properties names. Example:
properties_names=['name1', 'name2']
properties_values=[['value1_of_name1', 'value2_of_name1'], ['value1_of_name2']]
show

bool, optional
Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)

Example

Classification

from odin.classes import AnalyzerClassification

my_analyzer = AnalyzerClassification("my_classifier_name", my_classification_dataset)
my_analyzer.show_confusion_matrix()

analyze_cm_output_a analyze_cm_output_b

N.B. As example, it is shown only the output of a single category, but the analysis is performed for all the categories selected. The confusion matrix among the categories is supported only for single-label classification task.


Tasks supported

Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
yes yes yes no no

show_true_positive_distribution()

It provides the true positive distribution among the categories.

Parameters

categories

list, optional
List of categories to be included in the analysis. If not specified, all the categories are included.
(default is None)
show

bool, optional
Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)

Example

Classification

from odin.classes import AnalyzerClassification

my_analyzer = AnalyzerClassification("my_classifier_name", my_classification_dataset)
my_analyzer.show_true_positive_distribution()

Localization

from odin.classes import AnalyzerLocalization

my_analyzer = AnalyzerLocalization("my_detector_name", my_localization_dataset)
my_analyzer.show_true_positive_distribution()

show_true_positive_distribution_output


Models comparison

Example

Classification

from odin.classes import ComparatorClassification

my_comparator = ComparatorClassification(dataset_gt_param, classification_type, models_proposals)
my_comparator.show_true_positive_distribution()

Localization

from odin.classes import ComparatorLocalization

my_comparator = ComparatorLocalization(dataset_gt_param, task_type, models_proposals)
my_comparator.show_true_positive_distribution()

comparator_tp_distribution


Tasks supported

Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
no yes yes yes yes

show_false_positive_distribution()

It provides the false positive distribution among the categories.

Parameters

categories

list, optional
List of categories to be included in the analysis. If not specified, all the categories are included.
(default is None)
show

bool, optional
Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)

Example

Classification

from odin.classes import AnalyzerClassification

my_analyzer = AnalyzerClassification("my_classifier_name", my_classification_dataset)
my_analyzer.show_false_positive_distribution()

Localization

from odin.classes import AnalyzerLocalization

my_analyzer = AnalyzerLocalization("my_detector_name", my_localization_dataset)
my_analyzer.show_false_positive_distribution()

show_false_positive_distribution_output


Models comparison

Example

Classification

from odin.classes import ComparatorClassification

my_comparator = ComparatorClassification(dataset_gt_param, classification_type, models_proposals)
my_comparator.show_false_positive_distribution()

Localization

from odin.classes import ComparatorLocalization

my_comparator = ComparatorLocalization(dataset_gt_param, task_type, models_proposals)
my_comparator.show_false_positive_distribution()

comparator_fp_distribution


Tasks supported

Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
no yes yes yes yes

show_false_negative_distribution()

It provides the false negative distribution among the categories.

Parameters

categories

list, optional
List of categories to be included in the analysis. If not specified, all the categories are included.
(default is None)
show

bool, optional
Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)

Example

Classification

from odin.classes import AnalyzerClassification

my_analyzer = AnalyzerClassification("my_classifier_name", my_classification_dataset)
my_analyzer.show_false_negative_distribution()

Localization

from odin.classes import AnalyzerLocalization

my_analyzer = AnalyzerLocalization("my_detector_name", my_localization_dataset)
my_analyzer.show_false_negative_distribution()

show_false_negative_distribution_output


Models comparison

Example

Classification

from odin.classes import ComparatorClassification

my_comparator = ComparatorClassification(dataset_gt_param, classification_type, models_proposals)
my_comparator.show_false_negative_distribution()

Localization

from odin.classes import ComparatorLocalization

my_comparator = ComparatorLocalization(dataset_gt_param, task_type, models_proposals)
my_comparator.show_false_negative_distribution()

comparator_fn_distribution


Tasks supported

Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
no yes yes yes yes

show_true_negative_distribution()

It provides the true negative distribution among the categories.

Parameters

categories

list, optional
List of categories to be included in the analysis. If not specified, all the categories are included.
(default is None)
show

bool, optional
Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)

Example

Classification

from odin.classes import AnalyzerClassification

my_analyzer = AnalyzerClassification("my_classifier_name", my_classification_dataset)
my_analyzer.show_true_negative_distribution()

show_true_negative_distribution_output


Models comparison

Example

Classification

from odin.classes import ComparatorClassification

my_comparator = ComparatorClassification(dataset_gt_param, classification_type, models_proposals)
my_comparator.show_true_negative_distribution()

comparator_tn_distribution


Tasks supported

Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
no yes yes no no

show_true_positive_distribution_for_categories_for_property()

It provides the true positive distribution of the property values for each category.

Parameters

property_name

str
Name of the property to be analyzed.
property_values

list, optional
List of the property values to be included in the analysis. If not specified, all the values are included.
(default is None)
categories

list, optional
List of categories to be included in the analysis. If not specified, all the categories are included.
(default is None)
show

bool, optional
Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)

Example

Classification

from odin.classes import AnalyzerClassification

my_analyzer = AnalyzerClassification("my_classifier_name", my_classification_dataset)
my_analyzer.show_true_positive_distribution_for_categories_for_property("property_name")

Localization

from odin.classes import AnalyzerLocalization

my_analyzer = AnalyzerLocalization("my_detector_name", my_localization_dataset)
my_analyzer.show_true_positive_distribution_for_categories_for_property("property_name")

show_true_positive_distribution_for_categories_for_property_output show_true_positive_distribution_for_categories_for_property_output_b


Models comparison

Example

Classification

from odin.classes import ComparatorClassification

my_comparator = ComparatorClassification(dataset_gt_param, classification_type, models_proposals)
my_comparator.show_true_positive_distribution_for_categories_for_property("property_name")

Localization

from odin.classes import ComparatorLocalization

my_comparator = ComparatorLocalization(dataset_gt_param, task_type, models_proposals)
my_comparator.show_true_positive_distribution_for_categories_for_property("property_name")

comparator_show_true_positive_distribution_for_categories_for_property_output comparator_show_true_positive_distribution_for_categories_for_property_output_b


Tasks supported

Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
yes yes yes yes yes

show_false_positive_distribution_for_categories_for_property()

It provides the false positive distribution of the property values for each category.

Parameters

property_name

str
Name of the property to be analyzed.
property_values

list, optional
List of the property values to be included in the analysis. If not specified, all the values are included.
(default is None)
categories

list, optional
List of categories to be included in the analysis. If not specified, all the categories are included.
(default is None)
show

bool, optional
Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)

Example

Classification

from odin.classes import AnalyzerClassification

my_analyzer = AnalyzerClassification("my_classifier_name", my_classification_dataset)
my_analyzer.show_false_positive_distribution_for_categories_for_property("property_name")

show_false_positive_distribution_for_categories_for_property_output show_false_positive_distribution_for_categories_for_property_output_b


Models comparison

Example

Classification

from odin.classes import ComparatorClassification

my_comparator = ComparatorClassification(dataset_gt_param, classification_type, models_proposals)
my_comparator.show_false_positive_distribution_for_categories_for_property("property_name")

comparator_show_false_positive_distribution_for_categories_for_property_output comparator_show_false_positive_distribution_for_categories_for_property_output_b


Tasks supported

Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
yes yes yes no no

show_false_negative_distribution_for_categories_for_property()

It provides the false negative distribution of the property values for each category.

Parameters

property_name

str
Name of the property to be analyzed.
property_values

list, optional
List of the property values to be included in the analysis. If not specified, all the values are included.
(default is None)
categories

list, optional
List of categories to be included in the analysis. If not specified, all the categories are included.
(default is None)
show

bool, optional
Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)

Example

Classification

from odin.classes import AnalyzerClassification

my_analyzer = AnalyzerClassification("my_classifier_name", my_classification_dataset)
my_analyzer.show_false_negative_distribution_for_categories_for_property("property_name")

Localization

from odin.classes import AnalyzerLocalization

my_analyzer = AnalyzerLocalization("my_detector_name", my_localization_dataset)
my_analyzer.show_false_negative_distribution_for_categories_for_property("property_name")

show_false_negative_distribution_for_categories_for_property_output show_false_negative_distribution_for_categories_for_property_output_b


Models comparison

Example

Classification

from odin.classes import ComparatorClassification

my_comparator = ComparatorClassification(dataset_gt_param, classification_type, models_proposals)
my_comparator.show_false_negative_distribution_for_categories_for_property("property_name")

Localization

from odin.classes import ComparatorLocalization

my_comparator = ComparatorLocalization(dataset_gt_param, task_type, models_proposals)
my_comparator.show_false_negative_distribution_for_categories_for_property("property_name")

comparator_show_false_negative_distribution_for_categories_for_property_output comparator_show_false_negative_distribution_for_categories_for_property_output_b


Tasks supported

Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
yes yes yes yes yes

show_true_negative_distribution_for_categories_for_property()

It provides the true negative distribution of the property values for each category.

Parameters

property_name

str
Name of the property to be analyzed.
property_values

list, optional
List of the property values to be included in the analysis. If not specified, all the values are included.
(default is None)
categories

list, optional
List of categories to be included in the analysis. If not specified, all the categories are included.
(default is None)
show

bool, optional
Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)

Example

Classification

from odin.classes import AnalyzerClassification

my_analyzer = AnalyzerClassification("my_classifier_name", my_classification_dataset)
my_analyzer.show_true_negative_distribution_for_categories_for_property("property_name")

Localization

from odin.classes import AnalyzerLocalization

my_analyzer = AnalyzerLocalization("my_detector_name", my_localization_dataset)
my_analyzer.show_true_negative_distribution_for_categories_for_property("property_name")

show_true_negative_distribution_for_categories_for_property_output show_true_negative_distribution_for_categories_for_property_output_b


Models comparison

Example

Classification

from odin.classes import ComparatorClassification

my_comparator = ComparatorClassification(dataset_gt_param, classification_type, models_proposals)
my_comparator.show_true_negative_distribution_for_categories_for_property("property_name")

comparator_show_true_negative_distribution_for_categories_for_property_output comparator_show_true_negative_distribution_for_categories_for_property_output_b


Tasks supported

Binary Classification Single-label Classification Multi-label Classification Object Detection Instance Segmentation
yes yes yes no no