IoU
analyze_intersection_over_union()
It provides a per-category analysis of the model performances at different Intersection Over Union (IoU) thresholds.
Parameters
- categories
list, optional- List of categories to be included in the analysis. If not specified, all the categories are included.
(default is None) - metric
Metrics, optional- Evaluation metric used for the analysis. If not specified, the default one is used.
(default is None) - show
bool, optional- Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)
Example
Localization
from odin.classes import AnalyzerLocalization
my_analyzer = AnalyzerLocalization("my_detector_name", my_localization_dataset)
my_analyzer.analyze_intersection_over_union()
Tasks supported
Binary Classification | Single-label Classification | Multi-label Classification | Object Detection | Instance Segmentation |
---|---|---|---|---|
no | no | no | yes | yes |
analyze_intersection_over_union_for_category()
It provides a per-category analysis of the model performances at different Intersection Over Union (IoU) thresholds.
Parameters
- category
str- Name of the category to be analyzed.
- metric
Metrics, optional- Evaluation metric used for the analysis. If not specified, the default one is used.
(default is None) - show
bool, optional- Indicates whether the plot should be shown or not. If False, returns the results as dict.
(default is True)
Example
Localization
from odin.classes import AnalyzerLocalization
my_analyzer = AnalyzerLocalization("my_detector_name", my_localization_dataset)
my_analyzer.analyze_intersection_over_union_for_category('catA')
Tasks supported
Binary Classification | Single-label Classification | Multi-label Classification | Object Detection | Instance Segmentation |
---|---|---|---|---|
no | no | no | yes | yes |